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The formation of bubbles on an orifice plate involves a moving contact line, especially in case of poor wet-
ting conditions. The dynamics of the moving contact line and contact angle have a significant impact on
the bubble departure size. Therefore, for the numerical simulation, an appropriate contact line boundary
condition is essential for a correct prediction of the bubble formation. Numerical tests have been per-
formed on two kinds of contact line models, one is a contact line velocity dependent model (Model-A,
a commonly used model) and the other is a stick-slip model (Model-B). The calculation results using
Model-A depend greatly on the prescribed maximum contact line velocity. With Model-B a parameter-
independent prediction can be obtained provided that the mesh is sufficiently fine. The dynamic advanc-
ing and receding contact angles, which are two required inputs to both models, have a significant
influence on the predicted bubble departure diameter, if the contact line moves beyond the inner rim
of the orifice. The effect of wettability on the bubble departure size is realized via the variation of the
maximum contact diameter. When the contact line sticks to a small region near the inner rim of the ori-
fice, such as the bubble formation on a thin-walled nozzle, the effects of the contact angle and contact
line models are negligible.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The three-phase moving contact line is a fundamental problem
for many industrial applications in multiphase flow. A material
contact angle (given by Young’s equation) can be defined at a posi-
tion microscopically close to the contact line. Due to the hysteresis,
there are many stable contact angles for a given system, of which
the largest is called the advancing angle, the smallest the receding
angle. When the contact line is moving, the dynamic contact angle
differs from its equilibrium counterpart and can be beyond the
range limited by the static advancing and receding angles (Sikalo
et al., 2005; Marmur and Rubin, 1973; Chigarev and Chigareva,
1986; Schimann, 2004); it was found experimentally to depend
on the static contact angle as well as on the capillary number Ca =
luct/r, or even to depend on the flow field outside the contact line
vicinity (Blake et al., 1999). There are also other factors which
make the contact angle different from the static value (Kandlikar
and Steinke, 2002; Drelich et al., 1996).

For engineering applications, the apparent contact angle is gen-
erally used as an auxiliary concept in studying the contact line
dynamics, which is the angle formed between the wall and a line
tangent to the interface at a certain (macroscopic) distance from
the apparent contact line. Experimentally, the apparent contact an-
ll rights reserved.
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gle is often determined using low-power optics at macroscopic
scales (�0.01 mm). Due to the free-surface bending, the apparent
contact angle by this definition is different from the angle micro-
scopically close to the contact line.

Theoretically, by the no-slip boundary condition, the well-
known stress singularity occurs at the contact line: the fluid
velocity is finite at the free-surface but zero at the substrate. For
partially wetting fluids, this contact line problem is typically ad-
dressed by either relaxing the no-slip boundary condition (with a
slip model) or by accounting for the effects of the long range inter-
molecular van der Waals forces (disjoining pressure) (Diez et al.,
2000). For completely wetting fluids, the inclusion of a microscopic
precursor film in front of the apparent contact line removes natu-
rally the singularity. The existence of the precursor liquid film un-
der various wetting conditions is in debate. If it do exist, it is
generally not fast enough to stay ahead of the contact line. There-
fore, it is unlikely that these thin films provide a mechanism for
relieving the stress singularity (Stoev et al., 1998).

For slip models, an independent specification of the contact an-
gle as a boundary condition is needed for determining the free-sur-
face shape. Classical approaches relate the contact angle to the
contact line velocity (Ca) (Cox, 1986; Dussan et al., 1991). There ex-
ist a number of such theories (refer Shikhmurzaev, 1997, Section
9). A simplified form of these theories is the Tanner’s law, which
states that the apparent contact angle is proportional to Ca1/3 as
proved by some experiments for wetting fluids and at low speeds.

mailto:yuming.chen@irs.fzk.de
http://www.sciencedirect.com/science/journal/03019322
http://www.elsevier.com/locate/ijmulflow


Fig. 1. Air bubble formation in water from orifice plates: (a) stainless steel surface (wetting); (b) stainless steel surface with wax coating (less wetting). Both the apparent
contact angle and contact diameter vary throughout the growth period. For the poor wetting case, the contact diameter extends far beyond the orifice inner rim resulting in a
much larger bubble size.
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The Tanner’s law suggests that the apparent contact angle involves
a balance of capillary and viscous forces with intermolecular forces
playing only a secondary role, particularly for Ca > 10�5 (Kalliada-
sis and Chang, 1994).

Macroscopic numerical simulations1 are widely used to study
practical systems containing immiscible fluids with the main inter-
est in macroscopic fluid and interfacial behavior. For these models,
the apparent contact angle is specified as a boundary condition
which is empirically related to the contact line velocity (slip veloc-
ity) (Smith et al., 2005; Huang et al., 2004; Francois and Shyy,
2003; Spelt, 2005). In studying droplet spreading, Sikalo et al.
(2005) included a body force on the contact line which was deter-
mined from an empirical correlation relating the dynamic contact
angle and contact line velocity (Ca) given by Kistler (1993). There-
fore, the dynamic contact angle needs not to be prescribed. Mazou-
chi et al. (2004) implemented the so-called numerical slip in a
boundary integral method for the free-surface Stokes flow. In this
method, the domain was discretized in such a way that grid points
occur near, but do not include the contact point, and the no-slip
was enforced at all grid points along the solid substrate. The calcu-
lated interface profile was extended to the substrate at the specified
(static) contact angle, determining the new contact line position.
Thus in this case the grid spacing is equivalent to the slip-length.
The calculation results (surface height, apparent contact angle) vary
logarithmically with the grid spacing. Also the stability of the
numerical scheme was found to depend strongly on the time step.
The grid spacing used is of an order of 5 lm (the surface height is
of an order of mm).

The major problem of these macroscopic simulations is that the
simulation results depend on the slip-length and thus on the grid
spacing (Mazouchi et al., 2004; Smith et al., 2005; Huang et al.,
2004; Spelt, 2005; Renardy et al., 2001). As pointed out by Diez
et al. (2000), the slip model with a constant slip-length is not viable
from the numerical point of view, since it requires an extremely
small grid spacing. According to Somalinga and Bose (2000), the
theories from Cox (1986) and Dussan et al. (1991) are able to pro-
vide a physical boundary condition for the contact angle for negli-
gible Reynolds numbers. Unfortunately, even the outer region
considered in the theories, where the capillary forces dominant,
is still much smaller than the commonly affordable mesh size (Sik-
alo et al., 2005). Furthermore, these theories are for small capillary
numbers and negligible Reynolds numbers. Due to the lack of
physical boundary conditions, in some studies the measured dy-
1 By ‘‘macroscopic”, we mean that the length scale is of an order of 1–100 lm
which corresponds to the commonly affordable numerical or visualization resolution
Therefore, the contact angle in this case is apparent. In fact, if the length scale is less
than 1 lm, for many technical surfaces with a surface roughness of around 1 lm, the
3D surface topography has to be taken into account. This is certainly a formidable
task.

2 The concept of using force balance to predict the bubble departure diameter is no
correct, since according to the Newton’s second law, the net force on the bubble
should be zero all the time. The predictions were actually achieved by an incomplete
force balance, making use of different magnitudes of various forces at differen
growth stages.
,
.

namic contact angle was directly used as a boundary condition,
e.g., Pasandideh-Fard et al. (1996), Fukai et al. (1995).

The formation of bubbles on a solid surface also involves a mov-
ing contact line, but receiving far less attention compared to the
droplet problems. In case that a bubble is formed on a thin-walled
nozzle, the contact line can stick to the nozzle inner or outer rim
while the contact angle can vary well beyond the limits given by
the receding and advancing angles (Marmur and Rubin, 1973),
the behavior of the moving contact line has little impact on the
bubble departure diameter (Oguz and Prosperetti, 1993). The same
is true for bubble formation under liquid co-flow conditions (Chen
et al., 2008). However, in case that a bubble is formed on a plane
surface such as an orifice plate, both the apparent contact angle
and the contact diameter vary in a complicated manner as the
bubble grows in size (see Fig. 1 and the figure caption). There is
no universal pattern of the time-history of the contact angle and
contact diameter (refer experimental results given by Chigarev
and Chigareva (1986), Schimann (2004), Kandlikar and Steinke
(2002), Gnyloskurenko et al. (2003) and Duhar and Colin (2006)).
In this case, the bubble departure diameter is strongly influenced
by the contact line behavior, which depends partially on the sur-
face wettability (Gnyloskurenko et al., 2003).

Obviously, in order to predict accurately the bubble departure
diameter in most situations, the moving contact line has to be in-
cluded in the theoretical formulation. The traditional predictions
based on the force balance at a certain time point are barely suc-
cessful (Fritz, 1935; Jensen and Memmel, 1986).2 Most of the
numerical simulations on gas bubble formation on submerged ori-
fices were carried out either using non-spherical models (interfa-
cial element method) (Marmur and Rubin, 1976; Liow and Gray,
1988) or using rigorous boundary integral methods (Oguz and
Prosperetti, 1993; Xiao and Tan, 2005). The latter is applicable only
to a restricted type of flow problems, e.g., potential or Stokes flows.
Very few studies are available by solving the full Navier–Stokes
equations, e.g., Gelach et al. (2007), perhaps due to the high com-
putational costs. Only a few numerical studies have taken into ac-
count the effects of moving contact line, e.g., Liow and Gray (1988).
In the study of Gelach et al. (2007), a constant contact angle was
used to study the effects of wettability.

In case of boiling on a heated surface, which is an important
field of engineering applications, the mechanisms governing the
moving contact line underneath a growing vapor bubble are fur-
ther complicated by the evaporation on the bubble base and the
t

t
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non-uniform temperature field, resulting the Marangoni flows, va-
por recoil forces, etc. There are several numerical studies on the
formation of isolated boiling bubbles (Stephan and Hammer,
1994; Son et al., 1999). All these studies consider an evaporating
microlayer and a non-evaporative thin film beneath the bubble.
According to Son et al. (1999), for a given dispersion constant,
the calculated apparent contact angle is ‘‘nearly independent of
the bubble growth process”, which implies that the applied contact
line model (including the long range van der Waals forces) may not
be appropriate. Very recently, Mukherjee and Kandlikar (2007)
studied the effects of dynamic contact angles on single bubble for-
mation during nucleate boiling using two kinds of contact line
models without considering the microlayer evaporation.

Apparently, for a relatively long period of time, the macroscopic
methods will be still dominant in studying the multiphase flow
phenomena with a moving contact line, both experimentally and
numerically. Therefore, it is important to have a detailed numerical
assessment of the commonly used contact line models and to find a
parameter-independent contact line model. These are done in this
numerical study in the context of bubble formation on submerged
orifices. Furthermore, the effects of contact angle will be discussed
in details.

2. Numerical scheme

In this study, the unsteady, incompressible Navier–Stokes equa-
tions have been solved for 2D axisymmetric laminar flows. The cal-
culation domain is a half cylinder (Fig. 2). A level set method
developed by Osher and Sethian (1988) is used to track the two-
phase interface.

2.1. Level set method

In the level set method, a continuous function / is introduced
over the whole computational domain. This level set function is gi-
ven the property of a distance function indicating the shortest dis-
tance to the interface. Thus, the zero level set of the function (/ = 0)
Fig. 2. Calculation domain.
represents the interface. We take / < 0 in the gas region and / > 0
in the liquid region. The evolution of / is given by

o/
ot
þw

*
�r/ ¼ 0; ð1Þ

where w
*

is the velocity of the interface. The physical properties are
assumed constant in each fluid, they take different values depend-
ing on the sign of /. To avoid a sudden jump of the material prop-
erties across the interface, which can have a substantial effect on
the stability of the numerical scheme, a smoothed Heaviside func-
tion is defined

Hð/Þ ¼
0 if / < �e
0:5½1þ /=e� sinðp/=eÞ=p� if j/j <¼ e
1 if / > e

8><
>:

ð2Þ

with e = 3h/2 (h is the grid spacing). A smoothed material property
c, e.g., density, viscosity, etc., is then calculated by

cð/Þ ¼ cLHð/Þ þ cV ð1� Hð/ÞÞ: ð3Þ

The initial value of / can be chosen to be a distance function, how-
ever under the evolution of Eq. (1) it will not necessarily remain
one. Thus it is necessary to reinitialize / so that it remains a dis-
tance function without changing its zero level set. We use the re-
distance techniques proposed by Sussman and Fatemi (1999). The
mass loss (or gain) is the main problem for the level set method
in certain situations, e.g., in studying free rising bubbles. In this
study, the rate of mass loss is negligible (less than 1%) compared
to imposed gas flow rate, therefore it is not a least concern.

2.2. Governing equations

The non-dimensional governing equations are

r�w* ¼0; ð4Þ
ow
*

ot þ
rp
q ¼�w

*
�rw

*
þ 1

Fr g
*
þ 1

qRe r�ðlrw
*
Þþr� lrw

*T
� �h i

þjdr/
qWe ¼ Fn: ð5Þ

Here a continuous surface force model is used (refer Brackbill et al.,
1992). In Eq. (5), d is a delta function given by the relation
rH = dr/. The Navier–Stokes equations are solved using the pro-
jection method of Chorin (1968). In this method an intermediate
velocity field w

*� is first calculated, which is generally not divergence
free, then the pressure at the next time level is calculated that en-
sures the velocity field satisfying the continuity equation.

2.3. Discretization

A finite difference scheme is applied on a 2D staggered (MAC)
grid system with an equal grid spacing h. In this grid system, the
pressure and level set function are defined at cell centers (i, j),
while the velocities are defined at the cell faces, viz. ui+1/2,j and
vi,j+1/2. A fifth order WENO scheme (Shu, 2003) is adopted for
the treatment of the convection terms in the momentum equa-
tions (Eq. (5)) and the advection equation for the level set func-
tion (Eq. (1)). The viscous and curvature terms are discretized
using a central difference scheme. A Bi-CGSTAB method with
ILU preconditioner is employed for solving the discretized Poisson
equation.

The maximum allowable time step Dtmax is determined by
restrictions due to CFL condition for explicit schemes. The real time
step Dt is obtained by

Dt ¼ CtDtmax: ð6Þ

Here Ct(<1) is a coefficient. In this study, Ct is given as a constant va-
lue in each calculation during most of the bubble formation period.
An adaptive time step is used for the 100 steps before and after
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bubble detachment where Ct is set to approach a minimum as bub-
ble approaches detachment. Without this treatment, the calculation
can break down during the bubble detachment stage in some cases.

2.4. Initial and boundary conditions

For the initial conditions, the two velocity components are set
to zero. The initial bubble is set to be a hemisphere centered on
the middle of the orifice mouth, thus the initial level set function
can be easily determined. Symmetric condition is used for the level
set function at the axis and the side boundary. An interpolation
scheme is used for the wall and top boundaries. For the velocity
boundary conditions, we apply symmetric conditions on the axis
and the side boundary, out-flow conditions on the top boundary,
inflow conditions at the orifice inlet. For the orifice wall, the no-slip
(Ls = 0), Navier-slip (uslip = �Ls(ou/oy)jwall), free-slip (Ls =1) and lo-
cal-free-slip conditions are tested. By local-free-slip, the free-slip is
applied on the contact line position and the slip velocity is gradu-
ally reduced to zero as the horizontal distance from the contact line
increases to 5 h, beyond a distance of 5 h no-slip condition is
applied.

2.5. Contact line models

Special treatment of the contact line movement is needed due
to the hysteresis and the dynamic nature of the contact angle.
Two kinds of contact line models are used.

2.5.1. Model-A (contact line velocity dependent model)
In this model, the apparent contact angle is linearly related to

the contact line velocity (uct). In addition, the Navier-slip condition
is applied on the wall. This kind of models has been commonly
used for macroscopic simulations (Smith et al., 2005; Huang
et al., 2004; Francois and Shyy, 2003; Mukherjee and Kandlikar,
2007). In this calculation, similar to the procedure given by Franc-
ois and Shyy (2003), the instantaneous apparent contact angle h is
set to vary linearly between the prescribed receding angle hre and
the advancing angle had if the instantaneous contact line velocity
uct is within a given maximum, ±uct,max. Beyond this range, the con-
tact angle is assigned by the value of had or hre, depending on the
sign of contact line velocity, namely

h ¼
hre if uct < �uct; max

hre þ ðhad � hreÞ uctþuct; max
2uct; max

if juctj <¼ uct; max

had if uct > uct; max

8><
>:

: ð7Þ
Fig. 3. Contact line Model
At the inner rim of the orifice wall, the contact angle is allowed to
have any value between hre and 180�. Physically, the orifice edge
is generally rounded (not in an ideal right angle), the apparent angle
can be up to a value of (90� + had). Numerically, this condition pre-
vents the contact line to recede into the orifice. The contact line
velocity is obtained by interpolating from the velocities of the first
two layers of cells next to the wall.

We found that the direct use of the above scheme imposes a se-
vere time step restriction and requires a high mesh resolution. Fur-
thermore, the relationship between the contact line velocity and
the contact angle prescribed by Eq. (7) could cause unphysical
behavior of the contact line movement, viz. the contact point can
move backwards even when the contact line velocity is positive,
or vice versa. Therefore, further restrictions are imposed: when
the contact line velocity is positive while the contact point moves
backwards, the contact line position is set to the same position as
in the former time step, and the contact angle is recalculated
accordingly. The same procedure is used for the opposite case.

In fact, the above model is only partially justified. In a droplet
impingement experiment, Bayer and Megaridis (2006) showed
that, for partially wetting surfaces, both the advancing and reced-
ing contact angle approach to a constant if the absolute contact line
velocity increases beyond a certain value. For the receding case,
this velocity is about 0.1 m/s, while it is about 0.3 m/s for the
advancing case. The relationship between uct and h was found to
depend on surface wettability, impact velocity and different
spreading–receding cycles. Pasandideh-Fard et al. (1996) showed
a (constant) maximum advancing contact angle of approximately
110� when the contact line velocity reaches about 0.2 m/s. As al-
ready pointed out in the introduction, a contact line model similar
to Model-A could lead to a simulation result depending on the slip-
length and grid spacing. Therefore, it is important to develop a
numerically independent model.

2.5.2. Model-B (stick-slip model)
Model-B is basically a kind of hypothesis. It has not yet been

justified by experiments or theories. In this model, the instanta-
neous apparent contact angle is also limited by the prescribed val-
ues of the apparent receding and advancing contact angles, except
when the contact line sticks on the orifice rim. However, there is no
explicit relationship between h and uct as given by Eq. (7). The vari-
ations of the contact angle and contact line position are shown
schematically in Fig. 3. Assuming that the initial interface is a � b
(l.h.s of Fig. 3), when the interfacial velocity at a distance h (one
grid spacing) from the wall is positive, viz. interface point moves
from b to c after a time step Dt, the contact point tends to remain
-B (stick-slip model).
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at the point a due to hysteresis. Thus the contact angle will change
from hb to hc. However, if hc < hre, the contact line position will
move from a to d while the contact angle will be equal to hre.
The contact angle and contact line position for an advancing
meniscus can be determined in a similar way (r.h.s of Fig. 3).

2.5.3. Numerical implementation of contact line models
We tested three methods in implementing the contact line

models. In the first method, for each time step after the advection
of the level set function by Eq. (1), the contact line position and/or
contact angle are brutally adjusted according to the contact line
models. The adjustment is repeated once more after the re-dis-
tance operation of the level set function. In the second method,
the re-distance, contact line adjustment and projection operations
are iterated for three times. The calculation results are essentially
the same as for the first method. In the third method, we tested
an iteration technique similar to the one used by Spelt (2005),
where the contact line model is implemented at each pseudo time
step in the re-distance operation (typically two to three steps). We
found that the resulted variation of the contact angles from the last
two steps is less than 0.001–0.01�. Although the calculated bubble
departure diameter is slightly different from that by using the first
method, the parameter dependencies are similar to those shown in
Section 3.2. The data shown in this paper are all obtained by using
the first method.

3. Results and discussion

Except for Section 3.1, the calculation examples shown in this
paper are for the formation of adiabatic air bubbles from a single
orifice or nozzle submerged in a water pool with constant gas
flow rates. The fluid properties are taken at a temperature of
20 �C. Unless otherwise stated, the results are shown only for
the first detached bubble for each calculation. The bubble depar-
ture diameter is the key parameter characterizing a given bub-
bling system; therefore, it will be the center of the following
discussions.
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3.1. Verifications

The numerical scheme has been tested for gas bubble forma-
tions on a thin-walled nozzle with or without liquid co-flow where
the contact line tends to stick on the inner rim of the nozzle. The
predicted bubble formation time is in very good agreement with
the experiments (Chen et al., 2008). For the cases where the con-
tact line could move back and forth, we verify the numerical model
with a droplet relaxation problem.

In this test, a hemispherical water droplet with an initial con-
tact radius of R0 is placed on a horizontal surface in the ambient
air. The droplet adapts its shape until the equilibrium state is
achieved. The steady-state solution of the problem depends on
the static contact angle hs and the Eotvos number ðEo ¼ qLgR2

0=rÞ
which is the ratio of the gravity force and capillary force. For
Eo� 1, the shape of the droplet is controlled by the capillary force
and shows a shape of spherical cap. The maximum height of the
droplet, H0, is given by

H0 ¼ R0ð1� cos hsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð2hs � 2 sin hs cos hsÞ

q
: ð8Þ

For Eo� 1, the shape of the droplet is controlled by the gravity
force and the maximum height of the droplet, H/, is proportional
to the capillary length (Dupont et al., 2007):

H1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðqLgÞ

q
sinðhs=2Þ: ð9Þ

Fig. 4 shows the normalized steady-state droplet height against the
Eotvos number. The contact line Model-A is used in the calculations
with had = 110� and hre = 100�. The initial water droplet radius
ranges from 0.1 to 10 mm, corresponding to an Eotvos number of
0.00135 and 13.5, respectively. The normalized droplet height
agrees well with the two asymptotic solutions of Eqs. (8) and (9)
for Eo� 1 and Eo� 1, respectively. For Eo = O(1), the transition be-
tween the spherical cap and the puddle occurs.

The results of parametric dependency study are shown in Fig. 5
in terms of relative deviations in the calculated droplet height as
compared to a reference case described inside the figure. The initial
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, had = 110�, hre = 100�, Uct,max = 0.1 m/s, Ls = 2 h, wall BC: local-free-slip).
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droplet radius is 1 mm for these calculations. The maximum devi-
ation is about 1.8% when the prescribed maximum contact line
velocity is larger than about 0.25 m/s; below this value, there is
no change in the calculated droplet height. The grid spacing h also
influences the calculations results. The relationship between the
droplet height and h is nonlinear. The effect of slip-length is small.
By using the contact line Model-B, the calculated droplet height is
only slightly smaller than that using Model-A. No impact or negli-
gible impact is shown for the domain size and time step size. Com-
pared to the parameter-dependent study to be shown in Section
3.2 for gas bubble formation, parameter dependency for the drop-
let relaxation is generally much weaker.

3.2. Parameter dependency

The dependency of the numerical schemes adopting the contact
line Model-A and Model-B on various parameters are discussed in
this section for bubble formation. The orifice diameter Do is 2 mm
and the gas flow rate Q is 3 cm3/s. The advancing contact angle is
set to 110� and the receding angle 40�. The Navier-slip is used as
the wall boundary condition with a slip-length of 2 h.

3.2.1. Effect of grid spacing h (Fig. 6)
For Do = 2 mm and Q = 3 cm3/s, the bubble departure diameters

calculated by using the contact line Model-A and Model-B con-
verge to a single value for a grid spacing less than 0.07 mm/grid
and the change of bubble diameter with grid-size is rather small.
In this calculation a grid-size independent result has not yet been
obtained. For the case Do = 1 mm and Q = 1 cm3/s, the deviation be-
tween Model-A and Model-B are much bigger than the former case.
The deviation becomes smaller as h decreases. For Model-B with
h< = 0.09 mm/grid, the discrepancies are generally small by using
the Navier-slip (with Ls = 2 h) and the local-free-slip conditions;
the calculation results tend to converge with regarding to the
grid-size. By using Model-A, the discrepancies are relatively big be-
tween a slip-length of 0.5 and 2 h. Overall, the predictions for the
case Do = 1 mm and Q = 1 cm3/s are more unreliable. Thus the
parameter studies shown follows are carried out for Do = 2 mm
and Q = 3 cm3/s.
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3.2.2. Effect of time step (Fig. 7)
In general, the applied time step size is of an order of micro-

seconds, which is subjected to the CFL conditions and is progres-
sively smaller as the bubble approaches detachment, because we
use an adaptive time step scheme to ensure the numerical stabil-
ity. For Model-B, the time step size has essentially no impact on
the calculation results. For Model-A with h = 0.0625 mm/grid,
the convergence is achieved at Ct< = 0.25; however, for
h = 0.075 mm/grid, the calculated bubble diameter is found to de-
pend nonlinearly on Ct.

3.2.3. Effect of slip-length Ls (Fig. 8)
By using the Navier-slip condition on the wall, the slip-length Ls

has to be prescribed. When Ls is zero, it is equivalent to the no-slip
condition; when Ls approaches infinity, it is equivalent to the free-
slip condition. For Model-B, the slip-length has essentially no influ-
ence on the departure diameter. For Model-A with h = 0.075 mm/
grid, the calculated bubble diameter is found to depend nonlinear-
ly on Ls in the entire range of Ls. With h = 0.0625 mm/grid, the cal-
culation results do not depend on Ls when Ls> = 5 h. This is in
accordance with the conclusion of Spelt (2005) that the slip-length
should be sufficiently large compared to the grid spacing in order
to minimizing the effective slip due to the discretization errors.
Obviously, this conclusion signifies the contradiction between the
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macroscopic numerical approach and the physical reality. Since the
true slip-length is of the order of intermolecular distance.

3.2.4. Effect of maximum contact line velocity uct,max (Fig. 9)
The prescribed value of the maximum contact line velocity has

a significant effect on the calculated bubble departure diameter by
using Model-A (Eq. (7)). Generally, D depends nonlinearly on uct,max

for uct,max < 0.25 m/s; thereafter, it increases linearly with uct,max

and the effects of the grid spacing disappear. Even if we assume
that Eq. (7) correctly approximates the relationship between the
contact line velocity uct and the contact angle h, uct,max remains
as one of the undetermined parameters for Model-A, which has
to be determined by experiments for different systems.

3.2.5. Summary and comments
The data shown in Figs. 6–9 are summarized in Fig. 10 as the

bubble departure diameter D against the maximum contact diam-
eter Dct, max. Also shown in the figure are the similar tests carried
out for the case Do = 1 mm and Q = 1 cm3/s. A clear tendency can
be seen: the departure diameter increases almost linearly with
the maximum contact diameter. Thus, we can postulate that the
change of the bubble size is realized through the variation of the
maximum contact diameter. If Dct,max is (for certain reason) not al-
lowed to be changed, then the impact of the parameters studied in
this section would be minimal. This is indeed the case for bubble
formations on a thin-walled nozzle with or without liquid co-flow,
where the contact line tends to stick on the inner rim of the nozzle
and the maximum deviation in bubble departure diameter was
found to be less than 1% under various conditions (refer Table 1
in Chen et al. (2008)). It can also be seen from Fig. 10 that, for a gi-
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Fig. 9. Effect of maximum contact velocity.
ven orifice diameter and gas flow rate, the discrepancy of predicted
bubble diameters could be very high by using different contact line
models and different parameters. This is particularly obvious when
Model-A is used.

In summary, for both contact line Model-A and Model-B, the
calculated bubble diameters converge to a single value for a rela-
tively small grid spacing (<0.07 mm/grid). For Model-B with
h = 0.075 mm/grid, an independent calculation result can be
achieved with respect to the domain size, the time step size and
the slip-length. Similar independences can also be achieved for
Model-A with h = 0.0625 mm/grid; however, as the grid spacing in-
creases to 0.075 mm/grid, the calculations are found to depend
nonlinearly on the above parameters. Compared to Model-B, Mod-
el-A shows a more irregular dependence on the boundary condi-
tions and on the slip-length when Ls < 5 h.

The above results tend to suggest that, for both Model-A and
Model-B, a parameter-independent result can be obtained when
the grid spacing is sufficiently small, with a better convergence
property for Model-B. In this study, we did not intend to decrease
the grid-size further which could require a formidable amount of
computation resources for a parameter study like this one. Note
that for Model-B, the apparent receding and advancing contact
angles are the only input parameters. However, for Model-A, an
additional parameter is required, viz. the maximum contact line
velocity, which has a significant effect on the predicted bubble
diameters (Fig. 9). Basically, the maximum contact line velocity
has to be determined by experiments, which is unavailable so
far for bubble formation. In this sense, Model-B is superior than
Model-A.

3.3. Effect of contact angles

The effect of contact angles on the bubble departure diameter
are studied by varying the prescribed advancing contact angle had

and receding angle hre, and using the contact line Model-B. The
wall and side velocity boundary conditions are local-free-slip and
symmetric, respectively. It has been verified that the local-free-slip
condition on the wall leads to the same results as the Navier-slip
condition for Model-B (not shown). The grid spacing is
h = 0.075 mm/grid, time step coefficient is Ct = 0.25. The domain
sizes for a orifice diameter of 1, 2 and 3 mm are 8 	 16, 9 	 18,
10 	 20 mm2, respectively.

3.3.1. Transient behavior
Fig. 11 shows the comparison of the transient behaviors of the

contact angle h and the contact radius Rct for two sets of had/hre,
50�/40� representing a wetting surface and 110�/70� representing
a less wetting surface, respectively. Generally, after the initial
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hemispherical bubble is set to grow, the contact angle approaches
quickly to the receding angle, and the contact radius expands
gradually while the contact angle remains essentially the value
of the receding angle. When the contact radius reaches the max-
imum, it remains constant while the contact angle increases to
the value of the advancing angle. Thereafter, the contact line be-
gins to shrink with a constant contact angle until it reaches the
inner rim of the orifice mouth. Then the necking process of the
bubble starts with a contact angle increasing beyond the advanc-
ing angle and detaches thereafter. For both sets of wetting angles,
the general behavior of the contact lines is similar. However, the
maximum contact radius for the less wetting case is much larger
than for the wetting case, resulting in a much bigger bubble
diameter (more than doubled in bubble volume). The contact line
behavior shown in Fig. 11 is very similar to the experimental re-
sults of Schimann (2004) for a static receding angle of 86� and an
advancing angle of 104�. Unfortunately, the gas flow rate used by
Schimann is not constant, thus a quantitative comparison is not
possible (the same holds for the data shown by Gnyloskurenko
et al. (2003)). Fig. 12a and b show the bubble contours for the
both cases, which are in a qualitative agreement with the visual-
ization results shown in Fig. 1.
Fig. 12. Bubble contours for a wetting surface (had = 50�, hre = 40�), (a), and a less
3.3.2. Effect of contact angles
The effect of contact angle on bubble departure diameter is

shown in Fig. 13. For a mean contact angle of 75�, with increasing
the difference (had � hre), the departure diameter decreases (Case
A). When the receding contact angle is kept constant, the bubble
size increases slightly with increasing advancing contact angle
(Cases B and C). However, when the advancing angle is kept con-
stant, the bubble size increases significantly with increasing reced-
ing contact angle (Cases D and E). By assuming a constant contact
angle viz. had = hre, the bubble size is found to increase dramatically
with increasing contact angle (Case F). In Case F for Do = 1 mm and
Q = 1 cm3/s, when the contact angle increases from 40� to 110�, the
increase in bubble departure diameter is about 70% which corre-
sponds to an increase of 390% in bubble volume. In fact, in case
of an orifice ring (nozzle) with small wall thickness, the contact an-
gle effect can be neglected, as shown in Fig. 14. In this case, the
contact line mainly sticks on the inner orifice rim during most of
the bubble formation period.

The change of contact angles leads to a change in the maximum
contact diameter (Dct,max) as shown in Fig. 15. Dct,max is exclusively
determined by the receding contact angle. The relationship be-
tween Dct,max and hre is shown in Fig. 16. The ratio Dct,max/Do in-
creases linearly with hre. For a very low gas inflow velocity (less
than a certain critical value), the contact line tends to stick on
the orifice inner rim (viz. Dct,max/Do = 1) for small receding angles
(less than a critical value), as shown for the case Do = 3 mm and
Q = 1 cm3/s with a gas inlet velocity of 0.14 m/s. In this case, the
change of the receding angle has a negligible effect on the bubble
departure diameter (refer Fig. 13).

Based on the these results, the bubble departure diameter can
be correlated with the receding and advancing contact angles,
the orifice diameter and the gas flow rate. However, as discussed
above, the use of hre is not a proper choice, since it needs two crit-
ical values (for gas inflow velocity and hre) which will result in a
complicated correlation. Instead, the maximum contact diameter
can be used which solely depends on hre and thus represents the
effect of hre. The relationship can be given as

D � Dct; maxQ 0:4h0:2
ad : ð10Þ

All variables are dimensional with D and Dct,max in mm, Q in cm3/s
and had in degree. Fig. 17 shows the results. The exponent 0.4 for Q
was predicted by Oguz and Prosperetti (1993) for the dynamic
growth case considering only the buoyancy and added mass forces.
wetting surface (had = 110�, hre = 70�), (b), with Do = 1 mm and Q = 1 cm3/s.
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From Figs. 16, 17, D is roughly proportional to hre, provided that
Dct,max/Do > 1, while the influence of had is insignificant.

These results show a significant influence of the dynamic con-
tact angles on the macroscopic numerical predictions. By using dif-
ferent contact line models or adopting different sets of the receding
and advancing angles, one can obtain a great variety of predictions.
Even so, the modeling efforts on the moving contact line beneath a
growing bubble should not be stopped. One could, as the first step,
generalize a model applicable for a limit class of bubble formation
problems, based on the experimental findings on the dynamic con-
tact line and contact angle (similar to the experiments of Bayer and
Megaridis (2006) and Blake et al. (1999) on droplets).

3.4. Comparison with experiments

The comparison of calculated (equivalent) bubble departure
diameters (of the first and, in some cases, the second detached
bubble) with experimental data is shown in Fig. 18. The experi-
mental data are taken from Hsu et al. (2000) (nozzle, N2/water sys-
tem), Jamialahmadi et al. (2001) and Ramakrishnan et al. (1969)
(orifice plate, air/water system) under constant flow rate condition.
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Fig. 14. Effect of advancing and receding contact angles on bubble departure
diameter (nozzle).
Model-B is used in these calculations. The wall and side velocity
boundary conditions are local-free-slip and symmetric, respec-
tively. The receding contact angle is given as 40� and the advancing
contact angle is 90�. The grid spacing is typically 0.075 mm/grid.

Good agreement between calculations and experiments is seen
for the orifice diameter of 3 mm (Fig. 18c) and 3.67 mm (Fig. 18d)
and particularly for the nozzle case (Fig. 18a) where the contact
line movement is limited by the outer rim of the nozzle. For the
orifice diameter of 2 mm (Fig. 18b), good agreement is seen for
low gas flow rates but the deviation increases for Q > 3 cm3/s. Big
deviations exist between experiments and calculations for bubble
formation on the orifice plate with Do = 1 mm (Fig. 18a). Further-
more, there is a large difference between the bubble diameters of
the first and second detached bubbles. If the calculations are per-
formed for a nozzle with a wall thickness of 0.1 mm, the calcula-
tion results agree very well with experiments (cross symbols in
Fig. 18a, only two data points available). The mentioned discrep-
ancy can be attributed to the wrong predictions of the contact line
behavior (e.g., maximum contact line diameter) by the adopted
contact line models. This in turn may be due to the relatively high
gas inflow velocity (1.27 m/s), the small bubble size (thus strong
capillary force on the contact line), insufficient mesh resolution,
or the combination of the above effects.

Fig. 19 shows the variations of the maximum contact diameter
with the gas inflow velocity (Uo). For the data which agree well
with the experiments, Dct,max/Do can be well related to Uo, viz.,
Dct,max/Do remains 1 for Uo less than 0.6 m/s, then it increases con-
sistently with Uo. Since the bubble departure diameter is strongly
influenced by the maximum contact diameter in case that Dct,max

is larger than Do, therefore, Uo could be a key parameter in gener-
ating a correlation for bubble departure diameter.

Basically, one can adopt a certain value of hre and/or had to obtain
a calculation result fitting perfectly the experiments. When Model-
A is used, an additional adjustable parameter can be used, viz. the
maximum contact line velocity. Therefore, it seems meaningless
at this stage to compare the simulation results with the experi-
ments in order to justify the numerical scheme or to try to interpret
the simulation results without considering the limits of the models
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(this has been done by many researchers). What seems meaningful
is that, there exist certain macroscopic rules for the contact line
dynamics. In this case, it is found that if a unique set of hre and had

is prescribed, the maximum contact diameter follows a common
tendency with regard to the gas flow velocity for various orifice
diameters and gas flow rates (Fig. 19). However, it needs to be ver-
ified by the experiments whether hre and had could remain the same
for a certain range of operation conditions. In the end, in order to
generalize a contact line model for the macroscopic numerical sim-
ulations, the experimental data on the dynamic advancing and
receding angles and possibly also on the relationship between the
dynamic angle and the contact line velocity are essential.

4. Conclusions

In this paper, the effects of the contact angle and the contact
line models on the bubble formation from submerged orifices were
studied using a 2D axisymmetric numerical scheme involving a le-
vel set method for tracking the two-phase interface.

Two kinds of contact line models have been tested. In Model-A
(Francois and Shyy, 2003), similar to many other models, the
instantaneous apparent contact angle is linearly related to the con-
tact line velocity. In Model-B (stick-slip model), the contact line is
set to move only when the contact angle exceeds the range limited
by the prescribed receding and advancing angles. For both models,
a parameter-independent result could be obtained when the grid
spacing is sufficiently small, with a better convergence property
for Model-B. For Model-A, besides the receding and advancing an-
gles, an additional parameter needs to be prescribed, viz. the max-
imum contact line velocity, which has a significant effect on the
predicted bubble diameters. Furthermore, compared to Model-B,
Model-A shows a more irregular dependence on the boundary con-
ditions and on the slip-length when Ls < 5h. Based on these results,
Model-B is more reliable than Model-A for the macroscopic
simulations.
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The effect of the contact angles on the bubble departure diam-
eter have been studied by varying the prescribed advancing and
receding contact angles. The calculated bubble departure diameter
increases slightly with the advancing angle, but it increases
strongly with the receding angle. The maximum contact diameter
is also mainly influenced by the receding contact angle. The bubble
departure diameter can be correlated with the maximum contact
diameter (representing the effect of receding contact angle), the
advancing contact angle, the orifice diameter and the gas flow rate.
All parameter dependencies and effects of contact angles tend to
disappear when the contact line sticks on the orifice/nozzle mouth,
e.g., in case of a nozzle with small wall thickness and/or under li-
quid co-flow condition.

Due to the strong dependency of the bubble diameter on the
prescribed values of the advancing and receding angles and the
maximum contact line velocity (in case of Model-A), the compari-
sons of the calculated bubble departure diameter with experimen-
tal data are not very meaningful. Basically, a very good agreement
could be obtained by changing any of these input parameters
alone. Under the circumstance that a physical boundary condition
for the dynamic contact angle is so far unavailable, the experimen-
tal data on the dynamic advancing and receding angles and also on
the relationship between the dynamic angle and the contact line
velocity are urgently needed in order to generalize a contact line
model for using in the macroscopic numerical simulations. Not un-
til then, the numerical simulations maybe remain as numerical
tests instead of real applications.
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